Lasse Schlör
lasse-schloer@unibo.it

University of Bologna
Bologna, 2025-12-10

PhD: Individually tailored digital-motor outcomes in real life

EU flag

Funded by the European Union’s Horizon Europe Marie Skłodowska-Curie Actions scheme, GA no. 101120256.

My Background

My background in Tübingen

University of Tübingen logo
Until 2018 B.Sc. in Computer Science
Until 2021 M.Sc. in Computer Science
Until 2024 Research Assistant in Cognitive Science
Tübingen Location Tübingen Neckarfront

CCVEP decoding

CCVEP codec

Audio engineering

Silicon Amp
Circus of Fools – Another World Within Circus of Fools – Contracult
Circus of Fools – REX Circus of Fools – Affair of the Poisons

Tools I like to work with

GNU logo Julia logo Vim logo

My background in Bologna

University of Bologna logo
Since June 2024 PhD in Health & Technologies
Bologna Location Bologna Piazza Maggiore

Medicine Made to Measure (MMM)

  • Doctoral network
    • Funded by the Marie Curie Actions Scheme
    • 10 PhD candidates
    • 22 participating organisations
  • Aim: to develop
    • Antisense oligonucleotide treatments (ASOs)
    • Tailored to single patients with nano-rare disease mutations
Medicine Made to Measure logo

MMM group photos

MMM group photo

First General Assembly – Barcelona, June 2024

MMM group photo

Mid-Term Meeting – Tübingen, December 2024

Rare diseases

(approximate numbers, for Europe)


“rare individually, common collectively”

MMM pipeline

MMM Pipeline

Supervisors

Dr. Sabato Mellone
Dr. Sabato Mellone
University of Bologna
Matthis Synofzik
Prof. Dr. Matthis Synofzik
University of Tübingen
Prof. Dr. Mats Karlsson
Prof. Dr. Mats Karlsson
University of Uppsala

Co-supervisors

Carlo Tacconi
Carlo Tacconi
mHealth Technologies s.r.l., Bologna
Prof. Dr. Lorenzo Chiari
Prof. Dr. Lorenzo Chiari
University of Bologna

Secondments

Bologna, Tübingen, and Uppsala
  • Uppsala, Sweden
    • Aug 2025 - Sep 2025
  • Tübingen, Germany
    • Sep 2024 - Nov 2024
    • Three more months in the coming years

Introduction

Individualized ASOs for nano-rare mutations:
Trial design challenges

Spinocerebellar Ataxia (SCA)


  • Increased gait variability
  • Widened base of support
  • Impaired foot placement
  • Loss of trunk control

PhD Objective

Deliverables

D3.1 Outcomes of the large cohort study
Completed Jan 2025
D3.2 Outcomes of focused study
Due May 2027 (postponed)
D3.3 Robust capture of n-of-1 movement changes
Due Sep 2027

Gait feature extraction

Inertial measurement units

Shoe sensor mounting

IMU hardware suppliers:

mHealth Technologies logo mHealth Technologies
APDM logo APDM
Generic smartphone icon Any smartphone can be used as IMU

Sensor configurations

Sensor configuration: Lower back and feet

Lower back and feet

Sensor configuration: Lower back

Lower back only

3D IMU trajectory plot

Gait cycle analysis

Gait cycle analysis

Gait analysis pipelines

Software Mobility Lab gaitmap mobgap
Organization APDM logo gaitmap logo Mobilise-D logo
Configuration Feet & trunk Feet only Trunk only
Open source
Validated*
Stride DMOs 58 12 4

*Note:
Clinical validation is outcome- and population-specific.
Only Mobility Lab has been validated in ataxias.

Gait measures

Gait cycle analysis

Full body gait measures: Gait cycle analysis

Double support

Full body gait measures: Double support Full body gait measures: Terminal double support

Spatial and temporal analysis

Full body gait measures: Spatial and temporal analysis

Elevation at mid-swing

Full body gait measures: Elevation at mid-swing

Foot contact angles

Full body gait measures: Foot contact angles

Circumduction

Full body gait measures: Circumduction

Lateral step variability

Full body gait measures: Lateral step variability

Gait cycle analysis

Full body gait measures: Gait cycle analysis

Double support

Full body gait measures: Double support Full body gait measures: Terminal double support

Spatial and temporal analysis

Full body gait measures: Spatial and temporal analysis

Elevation at mid-swing

Full body gait measures: Elevation at mid-swing

Foot contact angles

Full body gait measures: Foot contact angles

Circumduction

Full body gait measures: Circumduction

Lateral step variability

Full body gait measures: Lateral step variability

Walking bouts

Walking bouts

Precise definitions vary. Typical criteria:

Walking segments

Split long walking bouts evenly into segments ≥25 strides.

Walking bouts

Additional features

Signal
Position
  • Left foot
  • Right foot
  • Trunk

×

Frame
  • Sensor
  • Body
  • World

×

Quantity
  • Acceleration
    • Velocity
    • Position
  • Angular velocity
    • Angle
  • (Magnetometer)
  • (Barometer)

×

Dimension
  • x
  • y
  • z

Window
Reference
  • Left foot
  • Right foot

×

Cycle segment
  • Stride
  • Swing
  • Stance

Feature classes
  • Stride-to-stride comparisons
  • Discrete transform coefficients

Window
  • Walking bout
  • Walking segment

Feature classes
  • Complexity measures

Stride-to-stride comparisons

Stride-to-stride comparisons

Discrete transform coefficients

Stride-to-stride comparisons

Complexity measures

Stride-to-stride comparisons

Feature aggregation

Aggregate:
Possible aggregators:

Feature transformation

Transform features on the per-stride, per-segment, or per-session/condition level.

Possible transformations:
Why transform? Examples:

Environmental context effects

Context stratification

Approach:
Keywords Covariate Threshold(s)
slow / fast Gait speed 1.2m/s
sporadic / continuous Number of steps in a 1-minute window 45
straight / curvy Number of turns in a 1-minute window 1
short / long Walking bout duration 30s
Disadvantages:

Context compensation

Approach:

Gait feature extraction summary figure

Gait feature extraction

Data

Dataset

Other potential datasets

Outcomes

Further covariates

SARA score

“Scale for the assessment and rating of ataxia”
Item Possible responses
1) Gait 0 - 8
2) Stance 0 - 6
3) Sitting 0 - 4
4) Speech disturbance 0 - 6
5) Finger chase 0 - 4
6) Nose-finger test 0 - 4
7) Fast alternating hand movements 0 - 4
8) Heel-shin slide 0 - 4
Total 0 - 40

ABC score

“Activities-specific balance confidence scale”

How confident are you that you will not lose your balance or become unsteady when you…

  1. …walk around the house?
  2. …walk up or down stairs?
  3. …bend over and pick up a slipper from the floor?

Disease onset estimates

Tezenas du Montcel et al. 2014 Table 2A

Tezenas du Montcel et al. 2014

Data: Per-visit level

Raw data, visit level, SARA score

SARA scores in healthy subjects simulated (based on Shaafi Kabiri et al. 2018)

Data: Per-visit level

Raw data, visit level, 41-item ABC score

Data: Per-visit level

Raw data, visit level, lateral step deviation, preferred speed task

Qualitative characteristics

Data are potentially “ill-behaved” in several ways:

Data: Per-segment level

Raw data, segment level, lateral step deviation, preferred speed task

Evaluation under traditional trial design

Cross-sectional testing

Cross-sectional box plot: SARA (with simulated controls data) Cross-sectional box plot: ABC41 Cross-sectional box plot: lateral step deviation
Cross-sectional box plot: stride length CV Cross-sectional box plot: stride length d2

(lab based)

Cross-sectional box plot: stride length CV Cross-sectional box plot: stride length d2

(real life)

Longitudinal paired-samples testing (Seemann et al.)

Seemann et al. 2025 Figure 2A

Seemann et al. 2025

Longitudinal paired-samples testing (Seemann et al.)

Seemann et al. 2025 Figure 2B

Seemann et al. 2025

Longitudinal paired-samples testing

Longitudinal delta plot, lateral step deviation, preferred speed task

Longitudinal paired-samples testing

Longitudinal delta plot, lateral step deviation, preferred speed task

Longitudinal paired-samples testing

Longitudinal delta plot, lateral step deviation, preferred speed task

Longitudinal paired-samples testing

Longitudinal delta plot, lateral step deviation, preferred speed task

Pooled sample size estimates

Outcome ranking

outcome ess rb_lgt rb_crs ρ_ΔΔ_2y spread
1y 2y 3y sym sara<8 sara≥8 sara -abc
test_dw_instance_compound_5 39 .86 .75 .96 .68 .28 .67 .32 .12
test_dw_instance_compound_3 45 .82 .66 .93 .59 .18 .62 .26 .26
test_dw_instance_compound_2 55 .77 .78 .78 .49 .36 .48 .58 .21
test_dw_instance_compound_4 66 .79 .65 .36 .75 .48 .52 .33 .2
agg_adjacent_swings_resampled_sensor_lumbar_acc_x_r_d1_abs_μ /σ /curvy_long/μ 74 .71 .45 .76 .52 .32 .46 -.5 -.06 .47
agg_adjacent_swings_resampled_sensor_lumbar_acc_x_r_μ /σ /curvy_long/μ 83 .62 .62 .67 .54 .24 .45 -.32 .0055 .45
agg_adjacent_swings_resampled_sensor_lumbar_gyr_z_r_abs_μ /σ /long /μ 86 .68 .46 .54 .5 .066 .42 -.036 .2 .52
agg_adjacent_swings_resampled_sensor_lumbar_gyr_z_r_abs_d1_abs_μ/σ /long /μ 88 .72 .4 .41 .49 .09 .4 .062 .32 .57
agg_adjacent_swings_resampled_sensor_lumbar_acc_x_r_abs_μ /σ /curvy_long/μ 88 .58 .66 .65 .54 .24 .45 -.3 .21 .42
agg_adjacent_swings_resampled_sensor_lumbar_gyr_z_r_abs_d3_abs_μ/σ /long /μ 89 .71 .42 .38 .48 .067 .41 .11 .093 .54
stance_duration_μ /cv/curvy_long/μ 90 .65 .76 .38 .63 .29 .52 .25 -.43 .45
agg_adjacent_swings_resampled_sensor_lumbar_gyr_z_r_abs_d2_abs_μ/σ /long /μ 93 .71 .44 .38 .48 .067 .4 .11 .21 .54
agg_adjacent_swings_resampled_sensor_lumbar_gyr_z_r_abs_d1_abs_μ/μ /long /μ 94 .62 .52 .43 .54 .12 .42 .16 .31 .44
double_support_apdm_μ /σ /curvy_long/μ 95 .69 .46 .49 .72 .42 .46 .13 -.37 .36
coeff_swings_sensor_acc_dft_x_1_abs_μ /cv/long /μ 95 .76 .51 .43 .71 .43 .44 .1 .044 .41
agg_adjacent_swings_resampled_sensor_lumbar_acc_x_r_abs_d2_abs_μ/μ /curvy_long/μ 96 .66 .5 .56 .63 .32 .49 -.24 .088 .42
agg_adjacent_swings_resampled_sensor_lumbar_gyr_z_r_abs_d3_abs_μ/μ /long /μ 97 .65 .49 .43 .54 .12 .42 .24 .35 .46
swing_apdm_μ /cv/curvy_long/μ 98 .72 .58 .49 .7 .36 .51 .15 -.32 .36
agg_adjacent_swings_resampled_sensor_lumbar_gyr_z_r_abs_d2_abs_μ/μ /long /μ 98 .64 .51 .41 .53 .11 .42 .22 .31 .43
agg_adjacent_swings_resampled_sensor_lumbar_acc_z_r_abs_d3_abs_μ/γ /short /μ 98 -.69 -.53 -.41 -.48 -.28 -.48 -.57 -.15 .69
agg_adjacent_swings_resampled_sensor_lumbar_acc_x_r_abs_d1_abs_μ/σ /curvy_long/μ 100 .66 .45 .69 .51 .31 .44 -.49 .071 .42
initial_plus_mid_swing_apdm_μ /cv/curvy_long/μ 100 .63 .69 .6 .67 .42 .42 -.097 .082 .38
agg_adjacent_swings_resampled_sensor_lumbar_gyr_z_r_abs_μ /cv/long /μ 100 .57 .56 .47 .5 .072 .41 .1 .15 .57
gait_speed_apdm_μ /σ /curvy_long/μ 100 .57 .73 .34 .44 .21 .45 .39 0 .42
(…)
sara_sim_1 103 .53 .56 .76 1 .85 1 1 .077
(…)

Outcome ranking (mobgap)

Outcome ranking (gaitmap)

TODO: Incorporate gaitmap

Outcome ranking: Metrics

ess 1-year estimated sample size (pooled from 1-, 2-, 3-year)
rb_lgt Longitudinal effect sizes (Wilcoxon signed-rank rank biserial)
rb_crs Cross-sectional effect sizes (Mann-Whitney rank biserial)
ρ_ΔΔ_2y 2-year change correlation (Spearman)
spread Measure of within-visit variation

Outcome ranking: Filtering

Require:

Panel model of outcome trajectories

Panel model

BOn BSat

\[ y_{ij} = \beta_1\mathrm{BOn}_{ij} + \beta_2\mathrm{BSat}_{ij} + \beta_3\mathrm{BOn}_{ij}\left(\mathrm{EDO}_\mathrm{o}\right)_{i} + \beta_4\mathrm{BOn}_{ij}\mathrm{Gender}_{i} + \beta_4\mathrm{BOn}_{ij}\mathrm{BMI}_{i} \]

Fixed-effects panel model predictions

Fixed-effects panel model: Lateral step deviation

Fit results

Outcome (lab-based) gait_speed_apdm_μ/μ/all/μ stride_length_apdm_μ/cv/all/μ
\(R^2\) 0.60 0.50
\(\mathrm{BOn}\) (\(p\)) -0.011 (0.92) 0.0083 (0.32)
\(\mathrm{BSat}\) (\(p\)) -0.22 (2.2e-07) 0.012 (0.00035)
\(\mathrm{BOn} \times \mathrm{Gender}\) (\(p\)) -0.095 (0.00028) 0.0044 (0.041)
\(\mathrm{BOn} \times \mathrm{BMI}\) (\(p\)) -0.0061 (0.10) 6e-04 (0.054)
\(\mathrm{BOn} \times \mathrm{EDO_o}\) (\(p\)) 0.0043 (0.00013) -0.00053 (5.3e-08)
ESS 60 106
ESS (Seemann et al. 2025) 66 67

Simulating outcome data

Data-generating process:

  1. Fix the number of patients and controls.
  2. Draw uniform ground-truth time since disease onset for first visit.
  3. Scale time since disease onset by log-normal variation to model ground-truth severity.
  4. Simulate selection bias by discarding patients above a fixed severity threshold.
  5. Simulate normal disease onset estimate error in approximate accordance with Tezenas du Montcel et al. 2014.
  6. Draw uniform number of visits per subject.
  7. Create time intervals with normal error and extrapolate time-varying variables.
  8. Transform ground-truth severity by basis functions imitating soft onset and feature saturation behavior.
  9. Add non-normal, serially correlated residuals with differing pre- and post-onset variance.

Simulating outcome data

Simulated data example

Assumption violations

Bias of BOn Bias of BSat Assumption violations legend
Here:

Composite measures

Why composite measures?

Optimized composite measures


\[ \min_\beta \sum_{i, j} \left( \left( t_{i j} - \bar{t}_{i \cdot} \right) \cdot I_{\mathrm{symptomatic}}(i) - \sum_{k} \left( y_{k i j} - \bar{y}_{k i \cdot} \right) \cdot \beta_k \right)^2 + \Omega(\beta) \]

This is a linear regression (with optional regularizer \(\Omega(\beta)\))


Factor analysis

  • The “original” latent variable model
  • Distills a set of observed variables into a few conceptual factors
Coni et al. 2019 Figure 2

Coni et al. 2019

Cross-sectional latent disease severity modeling

Cross-sectional latent disease severity modeling

  1. Cross-sectionally, on the segment level
  2. Use established relationships between features and severity for a longitudinal model

Item characteristic curves (Hamdan et al.)

Hamdan et al. 2024 Figure 1

Hamdan et al. 2024

Fisher information (Hamdan et al.)

Hamdan et al. 2024 Figure 4

Hamdan et al. 2024

ccIRT model performance (Hamdan et al.)

Hamdan et al. 2025 Figure 4

Hamdan et al. 2025

ccIRT model performance (Hamdan et al.)

Hamdan et al. 2025 Figure 5

Hamdan et al. 2025

Model overview

\[ y_{ij} = f\left(s_{v(i)}, \gamma_j\right) \, \beta_j + \alpha_j + \epsilon_{ij} \qquad \epsilon_{ij} \sim t_\nu\left(0, \sigma^2_j\right), \, s_v \sim \mathcal{N}(0, 1) \]

Where:

Choice of \(f\)

\[ \begin{align} \mathrm{exprel}(x) &= \frac{e^x - 1}{x} \\ \mathrm{tilt}(x, \gamma) &= x \, \mathrm{exprel}(\gamma x) \\ f(x, \gamma) &= \mathrm{tilt}(x, \gamma) \, \mathrm{scale}(\gamma) + \mathrm{offset}(\gamma) \end{align} \]

Where \(\mathrm{scale(\gamma)}\) and \(\mathrm{offset}(\gamma)\) are deterministic functions of \(\gamma\) chosen such that \[ x \sim \mathcal{N}(0, 1) \Rightarrow \mathrm{E}\left[f(x, \gamma)\right] = 0, \mathrm{Var}\left[f(x, \gamma)\right] = 1 \]

Choice of \(f\)

Choice of residual prior

\[ \epsilon_{ij} \sim t_\nu\left(0, \sigma^2_j\right) \]

Where

\[ \begin{align} \log \sigma_j &\sim \mathcal{N}\left(\mu_\sigma, \sigma^2_\sigma\right) \\ \mu_\sigma &\sim \mathcal{N}\left(\log \mu_{\mu_\sigma}, \left(\frac{\log \sigma_{\mu_\sigma}}{1.96}\right)^2\right) \\ \log \sigma_\sigma &\sim \mathcal{N}\left(\log \mu_{\sigma_\sigma}, \left(\frac{\log \sigma_{\sigma_\sigma}}{1.96}\right)^2\right) \end{align} \]

And e.g. \[ \mu_{\mu_\sigma} = 0.8 \qquad \sigma_{\mu_\sigma} = 1.5 \qquad \mu_{\sigma_\sigma} = 0.3 \qquad \sigma_{\sigma_\sigma} = 1.6 \]

Choice of parameter priors

\[ \begin{align} \alpha_j &\sim \mathcal{N}(0, \sigma^2_\alpha) \\ \beta_j &= \mathrm{softplus}(\eta_j, \delta) \qquad \eta_j \sim \mathcal{N}(\mu_\eta, \sigma^2_\eta) \\ \gamma_j &\sim \mathcal{N}(0, \sigma^2_\gamma) \end{align} \]

Where e.g. \[ \sigma_\alpha = 0.5 \qquad \mu_\eta = -1 \qquad \sigma_\eta = 0.7 \qquad \sigma_\gamma = 0.5 \qquad \delta = 1 \]

And \[ \mathrm{softplus}(x, \delta) = \max(x, 0) + \log\left(1 + e^{-\frac{|x|}{\delta}}\right) \, \delta \]

softplus function

Disease progression modeling

Latent disease progression model

\[ \theta_{i j} = \begin{cases} h \left( \left( \beta + b_i \right) \left( t_{i j} - \tau_i \right) \right) + u_{i j} & i \in \mathrm{patients} \\ 0 & i \in \mathrm{controls} \end{cases} \] \[ y_{k i j s} = \nu_k + \lambda_k \theta_{i j} + \epsilon_{k i j s} \]
\(t_{i j}\) Time since baseline for subject \(i\) at visit \(j\) Known
\(\theta_{i j}\) Disease severity Latent
\(\tau_i\) Disease onset relative to baseline Random effect
\(\beta + b_i\) Progression rate Fixed effect (population) + random effect
\(h\) Hinge or sigmoidal function
\(u_{i j}\) Per-visit severity baseline Random effect
\(y_{k i j s}\) Outcome \(k\) in walking segment \(s\) Known
\(\mu_k, \lambda_k\) Per-outcome intercept and slope (factor loading) Fixed effects
\(\epsilon_{k i j s}\) Residual error

TODO: Update this draft

Thank you!

Go to index (relative)
Go to index (online)