Lasse Schlör
lasse-schloer@unibo.it

University of Bologna
Bologna, 2025-08-21

PhD: Individually tailored digital-motor outcomes in real life

EU flag

Funded by the European Union’s Horizon Europe Marie Skłodowska-Curie Actions scheme, GA no. 101120256.

My Background

My background in Tübingen

University of Tübingen logo
Until 2018 B.Sc. in Computer Science
Until 2021 M.Sc. in Computer Science
Until 2024 Research Assistant in Cognitive Science
Tübingen Location Tübingen Neckarfront

CCVEP decoding

CCVEP codec

Audio engineering

Silicon Amp
Circus of Fools – Another World Within Circus of Fools – Contracult
Circus of Fools – REX Circus of Fools – Affair of the Poisons

Tools I like to work with

GNU logo Julia logo Vim logo

My background in Bologna

University of Bologna logo
Since June 2024 PhD in Health & Technologies
Bologna Location Bologna Piazza Maggiore

Medicine Made to Measure (MMM)

  • Doctoral network
    • Funded by the Marie Curie Actions Scheme
    • 10 PhD candidates
    • 22 participating organisations
  • Aim: to develop
    • Antisense oligonucleotide treatments (ASOs)
    • Tailored to single patients with nano-rare disease mutations
Medicine Made to Measure logo

MMM group photos

MMM group photo

First General Assembly – Barcelona, June 2024

MMM group photo

Mid-Term Meeting – Tübingen, December 2024

Rare diseases

(approximate numbers, for Europe)


“rare individually, common collectively”

MMM pipeline

MMM Pipeline

Supervisors

Dr. Sabato Mellone
Dr. Sabato Mellone
University of Bologna
Matthis Synofzik
Prof. Dr. Matthis Synofzik
University of Tübingen
Prof. Dr. Mats Karlsson
Prof. Dr. Mats Karlsson
University of Uppsala

Co-supervisors

Carlo Tacconi
Carlo Tacconi
mHealth Technologies s.r.l., Bologna
Prof. Dr. Lorenzo Chiari
Prof. Dr. Lorenzo Chiari
University of Bologna

Secondments

Bologna, Tübingen, and Uppsala
  • Uppsala, Sweden
    • Aug 2025 - Sep 2025
  • Tübingen, Germany
    • Sep 2024 - Nov 2024
    • Three more months in the coming years

Introduction

Individualized ASOs for nano-rare mutations:
Trial design challenges

Spinocerebellar Ataxia (SCA)


  • Increased gait variability
  • Widened base of support
  • Impaired foot placement
  • Loss of trunk control

Deliverables

D3.1 Outcomes of the large cohort study
Completed Jan 2025
D3.2 Outcomes of focused study
Due May 2027 (postponed)
D3.3 Robust capture of n-of-1 movement changes
Due Sep 2027

Gait feature extraction

Inertial measurement units

Shoe sensor mounting

IMU hardware suppliers:

mHealth Technologies logo mHealth Technologies
APDM logo APDM
Generic smartphone icon Any smartphone can be used as IMU

Sensor configurations

Sensor configuration: Lower back and feet

Lower back and feet

Sensor configuration: Lower back

Lower back only

3D IMU trajectory plot

Gait cycle analysis

Gait cycle analysis

Gait analysis pipelines

Software Mobility Lab gaitmap mobgap
Organization APDM logo gaitmap logo Mobilise-D logo
Configuration Feet & trunk Feet only Trunk only
Open source
Validated*
Stride DMOs 58 12 4

*Note:
Clinical validation is outcome- and population-specific.
Only Mobility Lab has been validated in ataxias.

Gait cycle analysis

Full body gait measures: Gait cycle analysis

Double support

Full body gait measures: Double support Full body gait measures: Terminal double support

Spatial analysis

Full body gait measures: Spatial analysis

Elevation at mid-swing

Full body gait measures: Elevation at mid-swing

Foot contact angles

Full body gait measures: Foot contact angles

Circumduction

Full body gait measures: Circumduction

Lateral step variability

Full body gait measures: Lateral step variability

Walking bouts

Walking bouts

Various possible definitions.

Here: Sequence of strides not interrupted for longer than two median stride durations.

Walking segments

Subdivision of walking bouts into more homogeneous segments:

Additional features

Signal
Position
  • Left foot
  • Right foot
  • Trunk

×

Frame
  • Sensor
  • Body
  • World

×

Quantity
  • Acceleration
    • Velocity
    • Position
  • Angular velocity
    • Angle
  • (Magnetometer)
  • (Barometer)

×

Dimension
  • x
  • y
  • z

Window
Reference
  • Left foot
  • Right foot

×

Cycle segment
  • Stride
  • Swing
  • Stance

Feature classes
  • Stride-to-stride comparisons
  • Discrete transform coefficients

Window
  • Walking bout
  • Walking segment

Feature classes
  • Complexity measures

Stride-to-stride comparisons

Discrete transform coefficients

Complexity measures

Context stratification

TODO: Weather?

Feature transformation

TODO

Feature aggregation

TODO

Context strata

Keywords Covariate Threshold(s)
slow / fast Gait speed 1.2m/s
sporadic / continuous Number of steps in a 1-minute window 45
straight / curvy Number of turns in a 1-minute window 1
short / long Walking bout duration 30s

Gait feature extraction summary figure

Gait feature extraction

Data

Dataset

Other potential datasets

Outcomes

Further covariates

SARA score

“Scale for the assessment and rating of ataxia”
Item Possible responses
1) Gait 0 - 8
2) Stance 0 - 6
3) Sitting 0 - 4
4) Speech disturbance 0 - 6
5) Finger chase 0 - 4
6) Nose-finger test 0 - 4
7) Fast alternating hand movements 0 - 4
8) Heel-shin slide 0 - 4
Total 0 - 40

ABC score

TODO

Disease onset estimates

Tezenas du Montcel et al. 2014 Table 2A

Tezenas du Montcel et al. 2014

Data: Per-visit level

Raw data, visit level, lateral step deviation, preferred speed task

Data: Per-visit level

Raw data, visit level, lateral step deviation, preferred speed task

Data: Per-visit level

Raw data, visit level, lateral step deviation, preferred speed task

Data: Per-segment level

Raw data, segment level, lateral step deviation, preferred speed task

Qualitative characteristics

Data are potentially “ill-behaved” in several ways:

Data: Per-walking-segment level

TODO

Simulating outcome data

TODO

Simulating outcome data

Simulated data example

Traditional trial design

Cross-sectional testing

Cross-sectional box plot: SARA (with simulated controls data) Cross-sectional box plot: ABC41 Cross-sectional box plot: lateral step deviation
Cross-sectional box plot: stride length CV Cross-sectional box plot: stride length d2

(lab based)

Cross-sectional box plot: stride length CV Cross-sectional box plot: stride length d2

(real life)

Longitudinal paired-samples testing

Seemann et al. 2025 Figure 2A

Seemann et al. 2025

Longitudinal paired-samples testing

Seemann et al. 2025 Figure 2B

Seemann et al. 2025

Longitudinal paired-samples testing

Longitudinal delta plot, lateral step deviation, preferred speed task

Longitudinal paired-samples testing

Longitudinal delta plot, lateral step deviation, preferred speed task

Longitudinal paired-samples testing

Longitudinal delta plot, lateral step deviation, preferred speed task

Longitudinal paired-samples testing

Longitudinal delta plot, lateral step deviation, preferred speed task

Pooled sample size estimates

Outcome ranking

outcome ess rb_lgt rb_crs ρ_ΔΔ_2y spread
1y 2y 3y sym sara<8 sara≥8 sara -abc
test_dw_instance_compound_5 39 .86 .75 .96 .68 .28 .67 .32 .12
test_dw_instance_compound_3 45 .82 .66 .93 .59 .18 .62 .26 .26
test_dw_instance_compound_2 55 .77 .78 .78 .49 .36 .48 .58 .21
test_dw_instance_compound_4 66 .79 .65 .36 .75 .48 .52 .33 .2
agg_adjacent_swings_resampled_sensor_lumbar_acc_x_r_d1_abs_μ /σ /curvy_long/μ 74 .71 .45 .76 .52 .32 .46 -.5 -.06 .47
agg_adjacent_swings_resampled_sensor_lumbar_acc_x_r_μ /σ /curvy_long/μ 83 .62 .62 .67 .54 .24 .45 -.32 .0055 .45
agg_adjacent_swings_resampled_sensor_lumbar_gyr_z_r_abs_μ /σ /long /μ 86 .68 .46 .54 .5 .066 .42 -.036 .2 .52
agg_adjacent_swings_resampled_sensor_lumbar_gyr_z_r_abs_d1_abs_μ/σ /long /μ 88 .72 .4 .41 .49 .09 .4 .062 .32 .57
agg_adjacent_swings_resampled_sensor_lumbar_acc_x_r_abs_μ /σ /curvy_long/μ 88 .58 .66 .65 .54 .24 .45 -.3 .21 .42
agg_adjacent_swings_resampled_sensor_lumbar_gyr_z_r_abs_d3_abs_μ/σ /long /μ 89 .71 .42 .38 .48 .067 .41 .11 .093 .54
stance_duration_μ /cv/curvy_long/μ 90 .65 .76 .38 .63 .29 .52 .25 -.43 .45
agg_adjacent_swings_resampled_sensor_lumbar_gyr_z_r_abs_d2_abs_μ/σ /long /μ 93 .71 .44 .38 .48 .067 .4 .11 .21 .54
agg_adjacent_swings_resampled_sensor_lumbar_gyr_z_r_abs_d1_abs_μ/μ /long /μ 94 .62 .52 .43 .54 .12 .42 .16 .31 .44
double_support_apdm_μ /σ /curvy_long/μ 95 .69 .46 .49 .72 .42 .46 .13 -.37 .36
coeff_swings_sensor_acc_dft_x_1_abs_μ /cv/long /μ 95 .76 .51 .43 .71 .43 .44 .1 .044 .41
agg_adjacent_swings_resampled_sensor_lumbar_acc_x_r_abs_d2_abs_μ/μ /curvy_long/μ 96 .66 .5 .56 .63 .32 .49 -.24 .088 .42
agg_adjacent_swings_resampled_sensor_lumbar_gyr_z_r_abs_d3_abs_μ/μ /long /μ 97 .65 .49 .43 .54 .12 .42 .24 .35 .46
swing_apdm_μ /cv/curvy_long/μ 98 .72 .58 .49 .7 .36 .51 .15 -.32 .36
agg_adjacent_swings_resampled_sensor_lumbar_gyr_z_r_abs_d2_abs_μ/μ /long /μ 98 .64 .51 .41 .53 .11 .42 .22 .31 .43
agg_adjacent_swings_resampled_sensor_lumbar_acc_z_r_abs_d3_abs_μ/γ /short /μ 98 -.69 -.53 -.41 -.48 -.28 -.48 -.57 -.15 .69
agg_adjacent_swings_resampled_sensor_lumbar_acc_x_r_abs_d1_abs_μ/σ /curvy_long/μ 100 .66 .45 .69 .51 .31 .44 -.49 .071 .42
initial_plus_mid_swing_apdm_μ /cv/curvy_long/μ 100 .63 .69 .6 .67 .42 .42 -.097 .082 .38
agg_adjacent_swings_resampled_sensor_lumbar_gyr_z_r_abs_μ /cv/long /μ 100 .57 .56 .47 .5 .072 .41 .1 .15 .57
gait_speed_apdm_μ /σ /curvy_long/μ 100 .57 .73 .34 .44 .21 .45 .39 0 .42
(…)
sara_sim_1 103 .53 .56 .76 1 .85 1 1 .077
(…)

Outcome ranking: Metrics

ess 1-year estimated sample size (pooled from 1-, 2-, 3-year)
rb_lgt Longitudinal effect sizes (Wilcoxon signed-rank rank biserial)
rb_crs Cross-sectional effect sizes (Mann-Whitney rank biserial)
ρ_ΔΔ_2y 2-year change correlation (Spearman)
spread Measure of within-visit variation

Outcome ranking: Filtering

Require:

Outcome trajectory modeling

Linear model

BOn BSat

\[ y_{ij} = \beta_1\mathrm{BOn}_{ij} + \beta_2\mathrm{BSat}_{ij} + \beta_3\mathrm{BOn}_{ij}\left(\mathrm{EDO}_\mathrm{o}\right)_{i} + \beta_4\mathrm{BOn}_{ij}\mathrm{Gender}_{i} + \beta_4\mathrm{BOn}_{ij}\mathrm{BMI}_{i} \]

Fixed-effects panel model predictions

Fixed-effects panel model: Lateral step deviation

Fit results

Outcome (lab-based) gait_speed_apdm_μ/μ/all/μ stride_length_apdm_μ/cv/all/μ
\(R^2\) 0.60 0.50
\(\mathrm{BOn}\) (\(p\)) -0.011 (0.92) 0.0083 (0.32)
\(\mathrm{BSat}\) (\(p\)) -0.22 (2.2e-07) 0.012 (0.00035)
\(\mathrm{BOn} \times \mathrm{Gender}\) (\(p\)) -0.095 (0.00028) 0.0044 (0.041)
\(\mathrm{BOn} \times \mathrm{BMI}\) (\(p\)) -0.0061 (0.10) 6e-04 (0.054)
\(\mathrm{BOn} \times \mathrm{EDO_o}\) (\(p\)) 0.0043 (0.00013) -0.00053 (5.3e-08)
ESS 60 106
ESS (Seemann et al. 2025) 66 67

Assumption violations

Bias of BOn Bias of BSat Assumption violations legend
Here:

Composite measures

Factor analysis

TODO: Include figure from Coni et al. 2019

Optimized composite measures


\[ \min_\beta \sum_{i, j} \left( \left( t_{i j} - \bar{t}_{i \cdot} \right) \cdot I_{\mathrm{symptomatic}}(i) - \sum_{k} \left( y_{k i j} - \bar{y}_{k i \cdot} \right) \cdot \beta_k \right)^2 + \Omega(\beta) \]

This is a linear regression (with optional regularizer \(\Omega(\beta)\))


TODO: Discuss cross-sectional IRT work of Hamdan et al.

Graded response model (IRT)

\[ P\left( Y_{ij} \ge k \mid \Psi_i \right) = \mathrm{logit}^{-1}\left( a_j \left( \Psi_i - b_{jk} \right) \right) \]
\(i\) Number of participant
\(j\) Number of SARA item
\(k\) A score for an item
\(Y_{ij}\) Observed score for participant \(i\) and item \(j\)
\(\Psi_i\) Latent disease severity for participant \(i\), with \(\Psi_i \sim \mathcal{N}\left( 0, 1 \right)\) assumed
\(a_j\) Discrimination parameter of item \(j\), to be estimated
\(b_{jk}\) "Difficulty" parameter of score \(k\) of item \(j\), to be estimated
\[ P\left( Y_{ij} = k \mid \Psi_i \right) = P\left( Y_{ij} \ge k \right) - P\left( Y_{ij} \ge k + 1 \right) \]

Item characteristic curves

Hamdan et al. 2024 Figure 1

Hamdan et al. 2024

Visual predictive check

Hamdan et al. 2024 Figure 3

Hamdan et al. 2024

Fisher information

Hamdan et al. 2024 Figure 4

Hamdan et al. 2024

Subpopulation analysis

Hamdan et al. 2024 Figure 5

Hamdan et al. 2024

Disease progression modeling

Latent disease severity model

\[ \theta_{i j} = \begin{cases} h \left( \left( \beta + b_i \right) \left( t_{i j} - \tau_i \right) \right) + u_{i j} & i \in \mathrm{patients} \\ 0 & i \in \mathrm{controls} \end{cases} \] \[ y_{k i j s} = \nu_k + \lambda_k \theta_{i j} + \epsilon_{k i j s} \]
\(t_{i j}\) Time since baseline for subject \(i\) at visit \(j\) Known
\(\theta_{i j}\) Disease severity Latent
\(\tau_i\) Disease onset relative to baseline Random effect
\(\beta + b_i\) Progression rate Fixed effect (population) + random effect
\(h\) Hinge or sigmoidal function
\(u_{i j}\) Per-visit severity baseline Random effect
\(y_{k i j s}\) Outcome \(k\) in walking segment \(s\) Known
\(\mu_k, \lambda_k\) Per-outcome intercept and slope (factor loading) Fixed effects
\(\epsilon_{k i j s}\) Residual error

TODO: Update this draft

Thank you!

Go to index (relative)
Go to index (online)