Lasse Schlör
lasse-schloer@unibo.it

University of Bologna
Bologna, 2025-09-17

PhD: Individually tailored digital-motor outcomes in real life
First annual review

EU flag

Funded by the European Union’s Horizon Europe Marie Skłodowska-Curie Actions scheme, GA no. 101120256.

Background

Medicine Made to Measure (MMM)

  • Doctoral network
    • Funded by the Marie Curie Actions Scheme
    • 10 PhD candidates
    • 22 participating organisations
  • Aim: to develop
    • Antisense oligonucleotide treatments (ASOs)
    • Tailored to single patients with nano-rare disease mutations
Medicine Made to Measure logo

Individualized ASOs for nano-rare mutations:
Trial design challenges

Spinocerebellar Ataxia (SCA)


  • Increased gait variability
  • Widened base of support
  • Impaired foot placement
  • Loss of trunk control

Digital motor outcomes (DMOs)

Full body gait measures: Gait cycle analysis Full body gait measures: Spatial analysis
Full body gait measures: Foot contact angles
Full body gait measures: Lateral step variability Full body gait measures: Circumduction

PhD Project Overview

Main dataset

Gait analysis pipelines

Software Mobility Lab gaitmap mobgap
Organization APDM logo gaitmap logo Mobilise-D logo
Configuration Feet & trunk Feet only Trunk only
Open source
Validated*
Stride DMOs 58 12 4

*Note:
Clinical validation is outcome- and population-specific.
Only Mobility Lab has been validated in ataxias.

Data: Per-segment level

Raw data, segment level, lateral step deviation, preferred speed task

Data: Per-visit level

Raw data, visit level, lateral step deviation, preferred speed task

Objectives

Enable single-patient ASO trial design, leveraging the large number of DMOs and walking segments in lieu of large N.

  1. Identify robust and informative DMOs
  2. Model disease severity longitudinally as a latent variable
  3. Perform a prospective validation study

Activities of the last year

Extracting additional DMOs

Signal
Position
  • Left foot
  • Right foot
  • Trunk

×

Frame
  • Sensor
  • Body
  • World

×

Quantity
  • Acceleration
    • Velocity
    • Position
  • Angular velocity
    • Angle
  • (Magnetometer)
  • (Barometer)

×

Dimension
  • x
  • y
  • z

Window
Reference
  • Left foot
  • Right foot

×

Cycle segment
  • Stride
  • Swing
  • Stance

Feature classes
  • Stride-to-stride comparisons
  • Discrete transform coefficients

Window
  • Walking bout
  • Walking segment

Feature classes
  • Complexity measures

Context stratification

Keywords Covariate Threshold
slow / fast Gait speed 1.2m/s
sporadic / continuous Number of steps in a 1-minute window 45
straight / curvy Number of turns in a 1-minute window 1
short / long Walking bout duration 30s

Gait feature extraction summary figure

Gait feature extraction

Cross-sectional testing

Cross-sectional box plot: SARA (with simulated controls data) Cross-sectional box plot: ABC41 Cross-sectional box plot: lateral step deviation
Cross-sectional box plot: stride length CV Cross-sectional box plot: stride length d2

(lab based)

Cross-sectional box plot: stride length CV Cross-sectional box plot: stride length d2

(real life)

Longitudinal paired-samples testing

Longitudinal delta plot, lateral step deviation, preferred speed task

Outcome ranking

outcome ess rb_lgt rb_crs ρ_ΔΔ_2y spread
1y 2y 3y sym sara<8 sara≥8 sara -abc
test_dw_instance_compound_5 39 .86 .75 .96 .68 .28 .67 .32 .12
test_dw_instance_compound_3 45 .82 .66 .93 .59 .18 .62 .26 .26
test_dw_instance_compound_2 55 .77 .78 .78 .49 .36 .48 .58 .21
test_dw_instance_compound_4 66 .79 .65 .36 .75 .48 .52 .33 .2
agg_adjacent_swings_resampled_sensor_lumbar_acc_x_r_d1_abs_μ /σ /curvy_long/μ 74 .71 .45 .76 .52 .32 .46 -.5 -.06 .47
agg_adjacent_swings_resampled_sensor_lumbar_acc_x_r_μ /σ /curvy_long/μ 83 .62 .62 .67 .54 .24 .45 -.32 .0055 .45
agg_adjacent_swings_resampled_sensor_lumbar_gyr_z_r_abs_μ /σ /long /μ 86 .68 .46 .54 .5 .066 .42 -.036 .2 .52
agg_adjacent_swings_resampled_sensor_lumbar_gyr_z_r_abs_d1_abs_μ/σ /long /μ 88 .72 .4 .41 .49 .09 .4 .062 .32 .57
agg_adjacent_swings_resampled_sensor_lumbar_acc_x_r_abs_μ /σ /curvy_long/μ 88 .58 .66 .65 .54 .24 .45 -.3 .21 .42
agg_adjacent_swings_resampled_sensor_lumbar_gyr_z_r_abs_d3_abs_μ/σ /long /μ 89 .71 .42 .38 .48 .067 .41 .11 .093 .54
stance_duration_μ /cv/curvy_long/μ 90 .65 .76 .38 .63 .29 .52 .25 -.43 .45
agg_adjacent_swings_resampled_sensor_lumbar_gyr_z_r_abs_d2_abs_μ/σ /long /μ 93 .71 .44 .38 .48 .067 .4 .11 .21 .54
agg_adjacent_swings_resampled_sensor_lumbar_gyr_z_r_abs_d1_abs_μ/μ /long /μ 94 .62 .52 .43 .54 .12 .42 .16 .31 .44
double_support_apdm_μ /σ /curvy_long/μ 95 .69 .46 .49 .72 .42 .46 .13 -.37 .36
coeff_swings_sensor_acc_dft_x_1_abs_μ /cv/long /μ 95 .76 .51 .43 .71 .43 .44 .1 .044 .41
agg_adjacent_swings_resampled_sensor_lumbar_acc_x_r_abs_d2_abs_μ/μ /curvy_long/μ 96 .66 .5 .56 .63 .32 .49 -.24 .088 .42
agg_adjacent_swings_resampled_sensor_lumbar_gyr_z_r_abs_d3_abs_μ/μ /long /μ 97 .65 .49 .43 .54 .12 .42 .24 .35 .46
swing_apdm_μ /cv/curvy_long/μ 98 .72 .58 .49 .7 .36 .51 .15 -.32 .36
agg_adjacent_swings_resampled_sensor_lumbar_gyr_z_r_abs_d2_abs_μ/μ /long /μ 98 .64 .51 .41 .53 .11 .42 .22 .31 .43
agg_adjacent_swings_resampled_sensor_lumbar_acc_z_r_abs_d3_abs_μ/γ /short /μ 98 -.69 -.53 -.41 -.48 -.28 -.48 -.57 -.15 .69
agg_adjacent_swings_resampled_sensor_lumbar_acc_x_r_abs_d1_abs_μ/σ /curvy_long/μ 100 .66 .45 .69 .51 .31 .44 -.49 .071 .42
initial_plus_mid_swing_apdm_μ /cv/curvy_long/μ 100 .63 .69 .6 .67 .42 .42 -.097 .082 .38
agg_adjacent_swings_resampled_sensor_lumbar_gyr_z_r_abs_μ /cv/long /μ 100 .57 .56 .47 .5 .072 .41 .1 .15 .57
gait_speed_apdm_μ /σ /curvy_long/μ 100 .57 .73 .34 .44 .21 .45 .39 0 .42
(…)
sara_sim_1 103 .53 .56 .76 1 .85 1 1 .077
(…)

Other activities

Quantile regression model

DMO normal range estimation

Fixed-effects panel model: Lateral step deviation

Single-DMO trajectory modeling

Simulated data example

Data simulation

Bias of BOn Bias of BSat Assumption violations legend

Inspection of data pathologies

\[ \min_\beta \sum_{i, j} \left( \left( t_{i j} - \bar{t}_{i \cdot} \right) \cdot I_{\mathrm{symptomatic}}(i) - \sum_{k} \left( y_{k i j} - \bar{y}_{k i \cdot} \right) \cdot \beta_k \right)^2 + \Omega(\beta) \]

Composite measure optimization

Periods abroad

Bologna, Tübingen, and Uppsala
  • Uppsala, Sweden
    • Aug 2025 - Sep 2025
      • Latent disease progression models
  • Tübingen, Germany
    • Sep 2024 - Nov 2024
      • Introduction to ataxia and the dataset
      • Replication of Tübingen analyses
    • Three more months in the coming years

Training & conferences

Next steps

Prospective study

Postponed:

Disease progression model

In progress:
1. Outcome pre-selection
  • Screening/ranking, continually refined
  • Machine learning (e.g. random forest)
2. Cross-sectional latent disease severity model
  • Relate outcomes to true disease severity
  • Further narrow down most informative outcomes
3. Longitudinal disease progression model
  • Predict untreated disease course
  • Estimate trial parameters

Thank you!

Go to index (relative)
Go to index (online)

Appendix slides

Sensor configurations

Sensor configuration: Lower back and feet

Lower back and feet

Sensor configuration: Lower back

Lower back only

3D IMU trajectory plot

SARA score

“Scale for the assessment and rating of ataxia”
Item Possible responses
1) Gait 0 - 8
2) Stance 0 - 6
3) Sitting 0 - 4
4) Speech disturbance 0 - 6
5) Finger chase 0 - 4
6) Nose-finger test 0 - 4
7) Fast alternating hand movements 0 - 4
8) Heel-shin slide 0 - 4
Total 0 - 40

Disease onset estimates

Tezenas du Montcel et al. 2014 Table 2A

Tezenas du Montcel et al. 2014

Data: Per-visit level

Raw data, lateral step deviation, preferred speed task

Outcome ranking: Metrics

ess 1-year estimated sample size (pooled from 1-, 2-, 3-year)
rb_lgt Longitudinal effect sizes (Wilcoxon signed-rank rank biserial)
rb_crs Cross-sectional effect sizes (Mann-Whitney rank biserial)
ρ_ΔΔ_2y 2-year change correlation (Spearman)
spread Measure of within-visit variation

Outcome ranking: Filtering

Require:

Optimized composite measures


\[ \min_\beta \sum_{i, j} \left( \left( t_{i j} - \bar{t}_{i \cdot} \right) \cdot I_{\mathrm{symptomatic}}(i) - \sum_{k} \left( y_{k i j} - \bar{y}_{k i \cdot} \right) \cdot \beta_k \right)^2 + \Omega(\beta) \]

This is a linear regression (with optional regularizer \(\Omega(\beta)\))