Lasse Schlör
lasse-schloer@unibo.it
University of Bologna
Bologna, 2025-09-17
Software | Mobility Lab | gaitmap | mobgap |
---|---|---|---|
Organization |
![]() |
|
|
Configuration | Feet & trunk | Feet only | Trunk only |
Open source | ✗ | ✓ | ✓ |
Validated* | ✓ | ✗ | ✓ |
Stride DMOs | 58 | 12 | 4 |
*Note:
Clinical validation is outcome- and population-specific.
Only Mobility Lab has been validated in ataxias.
Enable single-patient ASO trial design, leveraging the large number of DMOs and walking segments in lieu of large N.
×
×
×
↓
×
↓
↓
↓
Keywords | Covariate | Threshold |
---|---|---|
slow / fast | Gait speed | 1.2m/s |
sporadic / continuous | Number of steps in a 1-minute window | 45 |
straight / curvy | Number of turns in a 1-minute window | 1 |
short / long | Walking bout duration | 30s |
(lab based)
(real life)
outcome | ess | rb_lgt | rb_crs | ρ_ΔΔ_2y | spread | |||||
---|---|---|---|---|---|---|---|---|---|---|
1y | 2y | 3y | sym | sara<8 | sara≥8 | sara | -abc | |||
test_dw_instance_compound_5 | 39 | .86 | .75 | .96 | .68 | .28 | .67 | .32 | .12 | |
test_dw_instance_compound_3 | 45 | .82 | .66 | .93 | .59 | .18 | .62 | .26 | .26 | |
test_dw_instance_compound_2 | 55 | .77 | .78 | .78 | .49 | .36 | .48 | .58 | .21 | |
test_dw_instance_compound_4 | 66 | .79 | .65 | .36 | .75 | .48 | .52 | .33 | .2 | |
agg_adjacent_swings_resampled_sensor_lumbar_acc_x_r_d1_abs_μ /σ /curvy_long/μ | 74 | .71 | .45 | .76 | .52 | .32 | .46 | -.5 | -.06 | .47 |
agg_adjacent_swings_resampled_sensor_lumbar_acc_x_r_μ /σ /curvy_long/μ | 83 | .62 | .62 | .67 | .54 | .24 | .45 | -.32 | .0055 | .45 |
agg_adjacent_swings_resampled_sensor_lumbar_gyr_z_r_abs_μ /σ /long /μ | 86 | .68 | .46 | .54 | .5 | .066 | .42 | -.036 | .2 | .52 |
agg_adjacent_swings_resampled_sensor_lumbar_gyr_z_r_abs_d1_abs_μ/σ /long /μ | 88 | .72 | .4 | .41 | .49 | .09 | .4 | .062 | .32 | .57 |
agg_adjacent_swings_resampled_sensor_lumbar_acc_x_r_abs_μ /σ /curvy_long/μ | 88 | .58 | .66 | .65 | .54 | .24 | .45 | -.3 | .21 | .42 |
agg_adjacent_swings_resampled_sensor_lumbar_gyr_z_r_abs_d3_abs_μ/σ /long /μ | 89 | .71 | .42 | .38 | .48 | .067 | .41 | .11 | .093 | .54 |
stance_duration_μ /cv/curvy_long/μ | 90 | .65 | .76 | .38 | .63 | .29 | .52 | .25 | -.43 | .45 |
agg_adjacent_swings_resampled_sensor_lumbar_gyr_z_r_abs_d2_abs_μ/σ /long /μ | 93 | .71 | .44 | .38 | .48 | .067 | .4 | .11 | .21 | .54 |
agg_adjacent_swings_resampled_sensor_lumbar_gyr_z_r_abs_d1_abs_μ/μ /long /μ | 94 | .62 | .52 | .43 | .54 | .12 | .42 | .16 | .31 | .44 |
double_support_apdm_μ /σ /curvy_long/μ | 95 | .69 | .46 | .49 | .72 | .42 | .46 | .13 | -.37 | .36 |
coeff_swings_sensor_acc_dft_x_1_abs_μ /cv/long /μ | 95 | .76 | .51 | .43 | .71 | .43 | .44 | .1 | .044 | .41 |
agg_adjacent_swings_resampled_sensor_lumbar_acc_x_r_abs_d2_abs_μ/μ /curvy_long/μ | 96 | .66 | .5 | .56 | .63 | .32 | .49 | -.24 | .088 | .42 |
agg_adjacent_swings_resampled_sensor_lumbar_gyr_z_r_abs_d3_abs_μ/μ /long /μ | 97 | .65 | .49 | .43 | .54 | .12 | .42 | .24 | .35 | .46 |
swing_apdm_μ /cv/curvy_long/μ | 98 | .72 | .58 | .49 | .7 | .36 | .51 | .15 | -.32 | .36 |
agg_adjacent_swings_resampled_sensor_lumbar_gyr_z_r_abs_d2_abs_μ/μ /long /μ | 98 | .64 | .51 | .41 | .53 | .11 | .42 | .22 | .31 | .43 |
agg_adjacent_swings_resampled_sensor_lumbar_acc_z_r_abs_d3_abs_μ/γ /short /μ | 98 | -.69 | -.53 | -.41 | -.48 | -.28 | -.48 | -.57 | -.15 | .69 |
agg_adjacent_swings_resampled_sensor_lumbar_acc_x_r_abs_d1_abs_μ/σ /curvy_long/μ | 100 | .66 | .45 | .69 | .51 | .31 | .44 | -.49 | .071 | .42 |
initial_plus_mid_swing_apdm_μ /cv/curvy_long/μ | 100 | .63 | .69 | .6 | .67 | .42 | .42 | -.097 | .082 | .38 |
agg_adjacent_swings_resampled_sensor_lumbar_gyr_z_r_abs_μ /cv/long /μ | 100 | .57 | .56 | .47 | .5 | .072 | .41 | .1 | .15 | .57 |
gait_speed_apdm_μ /σ /curvy_long/μ | 100 | .57 | .73 | .34 | .44 | .21 | .45 | .39 | 0 | .42 |
(…) | ||||||||||
sara_sim_1 | 103 | .53 | .56 | .76 | 1 | .85 | 1 | 1 | .077 | |
(…) |
DMO normal range estimation
Single-DMO trajectory modeling
Data simulation
Inspection of data pathologies
\[ \min_\beta \sum_{i, j} \left( \left( t_{i j} - \bar{t}_{i \cdot} \right) \cdot I_{\mathrm{symptomatic}}(i) - \sum_{k} \left( y_{k i j} - \bar{y}_{k i \cdot} \right) \cdot \beta_k \right)^2 + \Omega(\beta) \]
Composite measure optimization
Postponed:
1. |
Outcome pre-selection
|
---|---|
2. |
Cross-sectional latent disease severity model
|
3. |
Longitudinal disease progression model
|
Lower back and feet
Lower back only
Item | Possible responses |
---|---|
1) Gait | 0 - 8 |
2) Stance | 0 - 6 |
3) Sitting | 0 - 4 |
4) Speech disturbance | 0 - 6 |
5) Finger chase | 0 - 4 |
6) Nose-finger test | 0 - 4 |
7) Fast alternating hand movements | 0 - 4 |
8) Heel-shin slide | 0 - 4 |
Total | 0 - 40 |
Tezenas du Montcel et al. 2014
ess | 1-year estimated sample size (pooled from 1-, 2-, 3-year) |
---|---|
rb_lgt | Longitudinal effect sizes (Wilcoxon signed-rank rank biserial) |
rb_crs | Cross-sectional effect sizes (Mann-Whitney rank biserial) |
ρ_ΔΔ_2y | 2-year change correlation (Spearman) |
spread | Measure of within-visit variation |
This is a linear regression (with optional regularizer \(\Omega(\beta)\))